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Abstract

The non-linear resonance coupling in a thin plate in the Kirchhoff-Love approximation is selected as a
two-dimensional example of mechanical systems exhibiting a rich range of resonant wave-like phenomena.
This is originally examined by use of Whitham’s average-Lagrangian method. In particular, the existence of
three basic resonant triads between longitudinal, shear and bending modes is shown. Some of these
necessarily enter cascade wave processes related to the instability of some of the mode components of the
triad under small perturbations. A short comparison with Kolmogorov’s cascades of turbulence is given.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The phenomenon of non-linear resonance coupling classically occurs in physical systems that
are governed by distinct modes of propagation; these may be of similar physical nature—e.g.,
various mechanical modes—or they may be of totally different nature—say, mechanical
and magnetic or electric—as is often the case. In any case the two basic ingredients needed
are (i) the existence of multimodes in the physical system and (ii) the dispersion of these modes
in the linearized case. Such physical situations have received the attention of applied
mathematicians and wave specialists in various fields of physics and engineering science, e.g.,
in non-linear optics and radiophysics (cf. [1,2]), in fluid dynamics (cf. [3]), and in elastic
crystals with a microstructure (cf. [4,5]). In the case of elastic crystals the multimodes are
due to a coupling of classical elastic d.o.f. with the kinematics of an internal structure—a rigid
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mechanical one such as in micropolar media and liquid crystals, a magnetic one such as in
ferromagnets (coupling between phonons and magnons), and an electric one in ferroelectric
bodies (electroelastic couplings).
In Part 1 [6], one-dimensional (in space) non-linear motions involving 2-d.o.f. in

elastic engineering structures were considered. In the present Part 2, the attention is
focused on the non-linear wave couplings in an exemplary two-dimensional (in space)
example, the one provided by non-linear waves in a thin elastic plate. The latter is modelled
as a Kirchhoff–Love thin-walled plate. The corresponding governing equations of the
second order in the non-linearity parameter are derived in Section 2. Linear modes of the
longitudinal, shear and bending types are introduced in Section 3. This allows one to define
the interactions between the dispersion manifolds with the possibilities of group- and
phase-velocity matching. Weakly non-linear waves are studied starting in Section 4 on the
basis of Whitham’s average-Lagrangian theory [7,8], also Ref. [4, Appendix A.5], and
Ref. [9, Chapter 4]. This is seldom exploited in solid mechanics, notable exceptions being in
Maugin and Hadouaj [10] and the thesis of one of the authors [11]. This is the main originality of
this contribution. For lack of space only some of the possibilities of non-linear resonance
couplings are exhibited. A complete study is given in a long unpublished report [12]. The study
reveals that among the possible resonant triads that can be identified exhibiting phase matching
and the appropriate non-linear coupling, only three provide the building blocks of further wave
constructs. Indeed, a brief study of the evolution of resonant triads shows that some of these are
isolated while others have unstable components that inevitably interact with other triads. This
yields the concept of cascade wave processes following along ideas of Richardson [13] and Landau
[14]. This is briefly discussed by way of conclusion. The necessarily sketchy nature of the paper is
emphasized as long cumbersome formulas of repetitive form are to be found in the already
mentioned long memoir [12].

2. Basic equations

The model considered is one of a thin-walled plate in the long-wave limit on the basis of the
theory of thin-walled shells. That is, h being the thickness and l a typical wavelength, then h=l{1
(e.g., 0.1). Let uðxÞ; uðyÞ; uðzÞ be the longitudinal and transverse displacement components in the
plate and uðx; y; tÞ; vðx; y; tÞ;wðx; y; tÞ the longitudinal and transverse components of the
displacement of the middle surface of the plate at z ¼ 0: In the Love–Kirchhoff approximation
one has the truncated representations

uðxÞ ¼ uðx; y; tÞ � zwxðx; y; tÞ; uðyÞ ¼ vðx; y; tÞ � zwyðx; y; tÞ;

uðzÞ ¼ wðx; y; tÞ; ð1Þ

where subscripts now denote partial spatial differentiation and t is the time. The related
deformation components are

exx ¼ ux � zwxx þ 1
2

u2
x; eyy ¼ vy � zwyy þ 1

2
v2y;

exy ¼ 1
2
ðuy þ vx � 2zwxy þ wxwyÞ: ð2Þ
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In this approximation, with a material obeying Hooke’s law in the adiabatic regime, the densities
of kinetic energy and (potential) elastic energy per unit surface of the plate are given by

K ¼ 1
2
rhðu2

t þ v2t þ w2
t Þ; ð3Þ

P ¼
Eh

2 1� n2ð Þ

Z h=2

�h=2
e2xx þ e2yy þ 2nexxeyy þ 2ð1� nÞe2xy

h i
; ð4Þ

where E; n and r denote Young’s modulus, the Poisson ratio, and the mass density, respectively.
With l a typical wavelength and c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ð1� n2Þr

p
; denoting a typical linear elastic wave speed, a

non-dimensionalization is achieved with primed quantities defined by

u ¼ lu0; :::; x ¼ lx0; :::; t ¼ ðl=cÞt0 ð5Þ

using now the primed quantities but then droping the primes to lighten the notation, the
Lagrangian density L ¼ K �P per unit area of the plate is given by

2L ¼ u2t þ v2t þ w2
t

� �
� u2x þ a2ðw2

xx þ w2
yyÞ þ v2y

h i

� 2n vyux þ a2wwwwyy

� �
�

ð1� nÞ
2

u2
y þ v2x þ 4a2w2

xy

h i

� m vyðw2
y þ nw2

xÞ þ uxðw2
x þ nw2

yÞ þ ð1� nÞðuy þ vxÞwxwy

h i

�
m2

4
ðw2

x þ w2
yÞ þ 0ðm3Þ; ð6Þ

where a ¼ h=
ffiffiffiffiffi
12

p
l is a non-dimensional radius of inertia and

m ¼ max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02 þ v02 þ w02ð Þ=l

q
ð7Þ

is a small parameter that characterizes the non-linearity in the present problem. The Euler–
Lagrange variational equations deduced from (6) read:

utt � uxx �
ð1� nÞ

2
uyy �

ð1þ nÞ
2

vxy ¼
m
2
@xðw2

x þ nw2
yÞ þ m

ð1� nÞ
2

@yðwxwyÞ; ð8aÞ

vtt � vyy �
ð1� nÞ

2
vxx �

ð1þ nÞ
2

uxy ¼
m
2
@yðw2

y þ nw2
xÞ þ m

ð1� nÞ
2

@xðwywxÞ ð8bÞ

and

wtt þ a2=4w ¼ m@x wxðux þ nvyÞ þ
1� n
2

wyðuy þ vxÞ
	 


þ m@y wyðvy þ nuxÞ þ
1� n
2

wxðuy þ vxÞ
	 


þ
m2

2
@x wxðw2

x þ w2
yÞ

h i
þ

m2

2
@y wyðw2

x þ w2
yÞ

h i
; ð8cÞ

where all the non-linear terms are in the right hand sides and =4 ¼ @4x þ 2@2x@
2
y þ @4y:
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3. Dispersion of linear waves

On setting m ¼ 0; the following linear wave system can be deduced from Eq. (8) :

utt � uxx �
ð1� nÞ

2
uyy �

ð1þ nÞ
2

vxy ¼ 0; ð9aÞ

vtt � vyy �
ð1� nÞ

2
vxx �

ð1þ nÞ
2

uxy ¼ 0; ð9bÞ

wtt þ a2r4w ¼ 0: ð9cÞ

The dispersion branches oj ¼ %ojðkÞ; j ¼ l; s; b; k ¼ kx; ky

� �
; of this system are given by

* highly dispersive bending waves:

ob ¼ a kj j2; ð10Þ

* dispersionless shear waves:

os ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� nÞ=2

p
kj j; ð11Þ

* dispersionless longitudinal waves:

ol ¼ kj j: ð12Þ

Further aj(k) are called complex constant amplitudes, fjðoj; kÞ ¼ ojt � k:x; the phases, and
ClðkÞ ¼ cu

l ðkÞ;c
v
l ðkÞ

� �
and CsðkÞ ¼ cu

s ðkÞ;c
v
sðkÞ

� �
the so-called polarization vectors, which

define the mode shape on the plane of the plate. One therefore has

cv
l ðkÞ ¼ plðkÞ c

u
l ðkÞ; cv

sðkÞ ¼ psðkÞc
u
s ðkÞ; ð13Þ

where the functions

plðkÞ ¼ kx=ky; psðkÞ ¼ �ky=kx ð14Þ

are the interrelation coefficients satisfying the orthogonality condition: plðkÞpsðkÞ ¼ �1: In
order to unify the notation an interrelation for bending waves is introduced formally, such that
pbðkÞ 	 0:
It must be noted that there are two characteristic manifolds on the dispersion surface of

bending waves (10). These manifolds are represented by closed curves, namely, the group-velocity

matching curve such that

oðsÞ
g ¼ ð1� nÞ=8a; kðsÞ

g

  ¼ ffiffiffiffiffiffiffiffiffiffiffi
1� n

p
=2

ffiffiffi
2

p
a; ð15Þ

where the propagation velocity of shear waves coincides with that of bending waves, and the
phase-velocity matching curve:

oðsÞ
ph ¼ ð1� nÞ=2a; k

ðsÞ
ph

  ¼ ffiffiffiffiffiffiffiffiffiffiffi
1� n

p
=

ffiffiffi
2

p
a; ð16Þ
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where the velocities of shear and bending waves are the same. These matching manifolds belong to
two circles of different radii created as the intersection between the planes o ¼ oðsÞ

g and o ¼ oðsÞ
ph

and the bending-wave dispersion surface given by Eq. (10) in the space of spectral parameters (see
Fig. 1). In the subsequent non-linear analysis the range of wave vectors is limited by kj jo1=2a
where the group velocity does not exceed the characteristic velocity of elastic waves.
The general linear-wave solution of system (9) is

uðx; tÞ ¼
RR

dkxdky alc
u
l exp ifl þ asc

u
s exp ifs

� �
þ ð
Þ�;

vðx; tÞ ¼
RR

dkxdky alplc
u
l exp ifl þ aspsc

u
s exp ifs

� �
þ ð
Þ�;

wðx; tÞ ¼
RR

dkxdkyab exp ifb þ ð
Þ�;

ð17Þ

where (.)* denotes the complex conjugate of the preceding term.

4. Weakly non-linear analysis: resonant triads

When the parameter m is non-zero but still very small, the right hand sides in Eq. (8) stand for a
weak non-linearity and they produce only small amplitude variations measured on the slow
temporal scale t ¼ mt and slow spatial scales w ¼ mx; myf g: Any formal solution to Eq. (8) may be
represented in the same form as in Eq. (17) but with amplitudes aj that should now depend also
upon the slowly varying spatio-temporal arguments t and w: When substituting from (17)
modified in such a manner into the basic set of Eq. (8), there results a set of non-linear integro-
differential equations that describe the spatio-temporal evolution of phases and amplitudes. In

Fig. 1. Intersection of the dispersion surfaces by a plane passing through the axis of natural frequencies. Loci of this

plane with the surfaces of the group- and phase-matchings are shown.
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order to simplify the structure of this rather complicated system, one should try first to uncover
those ‘‘primary’’ d.o.f. which define the general dynamical features of the system. Simultaneously,
one should drop all ‘‘secondary’’ d.o.f. which will produce only small corrections to the spatio-
temporal evolution. With a view to give a satisfactory mathematical sketch along this line of
thought, one must investigate the so-called resonant manifolds along which the phase matching
conditions hold true. Note that the presence of the resonant manifold in the space of natural
frequencies and wave vectors is a necessary condition for the appearance of a non-linear resonant
coupling between quasi-harmonics due to so-called internal resonances, while sufficient conditions
are defined by the concrete form of the non-linearity under consideration. Here, in the simplest
case the non-linear coupling of wave triads is expected in the investigated system because the
lowest order non-linearity in the basic Eq. (8) is quadratic. The triple-wave phase matching
conditions read

k1 ¼ k2 þ k3; oaðk1Þ ¼ obðk2Þ þ ogðk3Þ; ð18Þ

where the natural frequencies are numbered in the following order:

oaðk1ÞXobðk2ÞXogðk3Þ; ð19Þ

and the indices a; b and g can be arbitrary ones from the set l; s; bf g which corresponds to the
longitudinal, shear and bending modes, respectively. When both the phase matching conditions
and an appropriate type of non-linearity hold true, then there arise triple-wave resonant
ensembles that we call resonant triads. Given the richness of the present dynamical system, there
formally exist

X3
n¼0

3!

n! 3� nð Þ!

X3�n

m¼0

ð3� nÞ!
m!ð3� n � mÞ!

¼ 27 ð20Þ

potential types of phase matching conditions (18), since the role of high- and low-frequency
modes inside any arbitrary triad may be played by waves of any type. The question naturally
arises of selecting only those physical matching conditions that make sense, since the others may
simply result from some geometrical formalism. This can be answered by examining the concrete
structure of the present non-linearity. This will simplify the problem without loss of general
dynamical properties of the system. To do so Whitham’s method of the average Lagrangian is first
used and then the most representative resonant triads selected.

4.1. Average Lagrangian

We write

%Lðt; wÞ ¼ Lðx; t; t; wÞh i ¼
1

ð2pÞ3

Z 2p

0

Z 2p

0

Z 2p

0

Ldfldfsdfb; ð21Þ

where fj ¼ ojt � k:x: Following Whitham [7,9], the average Lagrangian is expanded in a power
series of m; i.e., %Lðt; wÞ ¼ %L2 þ m %L3 þ 0ðm2Þ: The vanishing of the first term is none other than the
dispersion relations written in explicit form as Da ¼ o2

a � o2
aðkÞ 	 0; a ¼ s; l; b: At the first order

in m; one has Euler–Lagrange equations derived from %L3 that describe the slow spatial-temporal
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variations of the complex amplitudes in the form

@ %L3

@an�
�

d

dt
@ %L3

@ðdan � =dtÞ
� =w

@ %L3

@ð=wan�Þ
¼ 0; ð22Þ

where the asterisk again denotes complex conjugacy. In the simplest case where the phase
matching conditions (18) for a single triad of quasi-harmonic waves hold good, the average
Lagrangian has the following structure:

%L3 ¼ � i$aðk1Þ aa � k1ð Þ
@aaðk1Þ

@t
� ð
Þ�

� �

� i$bðk2Þ ab � ðk2Þ
@abðk2Þ

@t
� ð
Þ�

� �

� i$gðk3Þ ag � ðk3Þ
@agðk3Þ

@t
� ð
Þ�

� �

� ivaðk1Þ$aðk1Þ aa � ðk1Þ=waaðk1Þ � ð
Þ�
� �

� ivbðk2Þ$bðk2Þ ab � ðk2Þ=wabðk2Þ � ð
Þ�
� �

� ivgðk3Þ$ gðk3Þ ag � ðk3Þ=wagðk3Þ � ð
Þ�
� �

� ibijkðk1;k2;k3Þ aa � ðk1Þabðk2Þagðk3Þ � ð
Þ�
� �

; ð23Þ

where vaðkÞ ¼ vaxðkÞ; vayðkÞ
� �

are the group velocities of the waves

$aðkÞ ¼ oaðkÞ 1þ paðkÞ½ � ð24Þ

and bijk are functions of the wave vectors which characterize the resonance coupling inside the
selected triad ði; j; kÞ: Eq. (22) then form a set of hyperbolic partial differential equations of the
form

@aaðk1Þ
@t

þ vaðk1Þ=waaðk1Þ ¼
bijk

$aðk1Þ
@U

@aa � ðk1Þ
ð25Þ

with similar equations for b and g with the appropriate dependence on k2 and k3. The potential U
given by

U ¼ aa � abag � aaab � ag� ð26Þ

is the average potential of the triple-wave resonant coupling (compare to Kovriguine et al. [6]).

4.2. Three types of resonant non-linear triads in the plate

Consider the propagation of a small perturbed quasi-harmonic wave in order to evaluate its
stability with respect to the other waves combined into a resonant triad. Let this wave play the
role of the high-frequency mode ðo1; k1Þ in the triad (18), (19). A pair of its low-frequency
satellites is associated with two points ðo2;k2Þ and ðo3; k3Þ at the intersections of the dispersion
surfaces defined by Eqs. (10) and (12), provided kj jo1=2a (see end of Section 3). These
intersections result from a permanent translation of one of the dispersion surfaces with respect to
the others, as the origin of any surface moves on the surface of the other. These loci define the
parameters of resonant triads in the spectral space ðo; kÞ in agreement with the matching
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conditions (18). In order to define the possible types of actually realizable triads, we call Tlbb; Tsbb;
Tbsb triads where indices identify the modal state of the triad (obviously, l for longitudinal mode, s
for shear mode, b for bending mode). These indices are here numbered so as to respect the order
defined by the matching conditions (18).

First type: To the primary high-frequency longitudinal wave, there always correspond two
secondary low-frequency bending waves on the resonant manifold belonging to the dispersion
surface of bending waves and defined by the expression: k1j j ¼ a k2j j2þ k3j j2

� �
; i.e., the Tlbb triad

(cf. Fig. 2).
Second type: If the shear wave is the high-frequency mode, then there exist two secondary

low-frequency bending waves on the resonant manifold belonging to the dispersion
surface (10) and defined by the expression a k2j j2þ k3j j2

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nð Þ=2

p
k1j j; hence the Tsbb triad

(cf. Fig. 3).
Third type: If the primary wave is a bending mode while the secondary waves are one bending

wave and one shear wave, we have a third type of resonant triad. This corresponds to a resonant
manifold defined as the intersection of the surfaces o ¼ a kj j2 and o� o1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� nÞ=2

p
kj j � k1j j;

where a k1j j2� k2j j2
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� nÞ=2

p
k3j j: This defines a Tbsb triad (cf. Fig. 4).

Remarkably enough the three types of triads just defined are physical ones for which
both the phase matching conditions and the appropriate type of non-linearity in the
governing equations hold true. As a matter of fact, any resonant triad in the plate
consists of a pair of bending waves and one longitudinal or shear wave. The reason for
this is that in the initial Lagrangian there are no such terms as vyuyvx or u3y; which would
create other hypothetical types of triads. This, in turn, means that there are no other types of
triple-resonant interactions within the present mathematical model of a plate than the three
already identified types.

Fig. 2. Scheme of the spectral state of Tlbb-type resonant triads (on a plane passing through the axis of natural

frequencies.
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5. Evolution of resonant triads

Truncated equations governing the evolution of triple-wave resonant ensembles may now be
derived. Only the case of the Tlbb-triad will be examined, the reader being referred to a long
memoir for the parallel treatment of the other two cases [12]. For this selected triad the solution of

Fig. 3. Scheme of the spectral state of Tsbb-type resonant triads.

Fig. 4. Scheme of the spectral state of Tbsb-type resonant triads.
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Eq. (8) is sought in the form

uðx; tÞ ¼ A1ðw; Z; tÞexp iF1 þ ð
Þ�;

vðx; tÞ ¼ B1ðw; Z; tÞexp iF1 þ ð
Þ�;

wðx; tÞ ¼ A2ðw; Z; tÞexp iF2 þ A3ðw; Z; tÞexp iF3 þ ð
Þ�;

ð27Þ

where Fi ¼ oit � ki:x; and the complex amplitudes of planar quasi-harmonic waves slowly vary
on the spatio-temporal scales w ¼ mx; Z ¼ my;t ¼ mt: The average Lagrangian characterizing the
evolution of the triad (27) reads

%L3 ¼ � io1 1þ p2l ðk1Þ
� � @A1

@t
A�

1 �
@A�

1

@t
A1

� �
� i

X
n¼2;3

on
@An

@t
A�

n �
@A�

n

@t
An

� �

� ik1x 1þ p2
l ðk1Þ

� � @A1

@w
A�

1 �
@A�

1

@w
A1

� �
� ik1y 1þ p2

l ðk1Þ
� � @A1

@Z
A�

1 �
@A�

1

@Z
A1

� �

� 2ia2
X
n¼2;3

knx knj j2
@An

@w
A�

n �
@A�

n

@w
An

� �
� 2ia2

X
n¼2;3

kny knj j2
@An

@Z
A�

n �
@A�

n

@Z
An

� �

� iblbbðA1A
�
1A

�
1 � A�

1A2A3Þ;

where plðk1 ¼ A1=B1Þ: The amplitude governing equations are obtained in the form

@A1

@t
þ v1x

@A1

@w
þ v1y

@A1

@Z
¼ blbb$

�1
1 A2A3;

@A2

@t
þ v2x

@A2

@w
þ v2y

@A2

@Z
¼ blbb$

�1
2 A1A

�
3;

@A3

@t
þ v3x

@A3

@w
þ v3y

@A3

@Z
¼ blbb$

�1
3 A1A

�
2:

ð28Þ

Here

v1ðk1Þ ¼
k1x

k1j j
;
k1y

k1j j

� �
; vaðkaÞ ¼ 2akax; 2akay

� �

are the group velocities of the longitudinal waves and of the bending waves , respectively. The
non-linear-coupling coefficient blbb is given by

blbb ¼ plðk1Þk1y k2yk3y þ nk2xk3x

� �
þ k1x k2xk3x þ nk2yk3y

� �

þ
1� n
2

� �
k1y þ plðk1Þk1x

� �
k2xk3y þ nk2yk3x

� �
: ð29Þ

Analyses of the same type hold good for the other two-resonance triad Tsbb and Tbsb with different
expressions for the coefficient (29)—interchange of indices in the appropriate manner. The
relevant expressions are to be found in Ref. [12]. These results, through first integrals of systems of
the type (28), globally allow one to discuss the stability of modes of propagation. In particular,
such a discussion shows why some resonant triads are isolated and why others cannot be isolated.
The following results are reached:

(i) Intense high-frequency longitudinal or shear waves are unstable with respect to small
perturbations as a result of the break-up instability within the Tlbb or Tsbb triads.
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(ii) Intense bending waves, the group velocity of which is less than the phase velocity of shear
waves

Dkoj jo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� nÞ=2

p� �
ð30Þ

are stable with respect to small perturbations, since there is no break-up instability in the
Tbsb-type of triads.

(iii) If the group velocity of bending waves exceeds the group velocity of shear waves (Eq. (30)
with reverse inequality sign), then such waves are unstable due to the Tbsb type of resonance
coupling.

However, there is an essential difference in the dynamical behavior of the Tlbb; Tsbb triads, on
the one hand, and the Tbsb triads on the other hand, which is revealed by their stability properties
against a broad class of initial perturbations. Inside the range of group velocities (30), the Tlbb and
Tsbb types of resonant triads are isolating resonant ensembles consisting of triplets of waves which
conserve the total energy of triads, since the waves entering these ensembles do not interact with
other resonant ensembles or other waves, at least within the present first order approximation
analysis. In other words such isolating triads are stable with respect to small perturbations over
any mode which makes up the triad. The existence domain of the Tbsb-type triads covers the range
of group velocities of high-frequency bending waves (inequality (30) with reverse sign). Any
intense bending wave with group velocity inside this range is disintegrated into two secondary
waves under small perturbation. One of these secondary waves is a stable bending mode with
group velocity inside the range (30), while the other secondary wave is an unstable shear wave
which can be the breaking-up component with a Tsbb-type triad. This means that the Tbsb-type
triad cannot be an isolating wave ensemble, since its secondary shear mode is always unstable
against small perturbations. This leads us to the necessary consideration of the non-linear
coupling between several resonant triads that are examined succinctly by way of conclusion.

6. Non-linear coupling between triads

One can see that any non-isolating resonant triad can be effectively coupled with other triads of
other types and spectral states. To formulate the problem of the multi-wave non-linear coupling
between triads, a structural scheme of modal interactions represented by a set of non-linearly
coupled triads of different types and spectral scales ought to be investigated. Following pioneering
works of Richardson [13] and Landau [14], this can be achieved based on the scenario of cascade

wave processes. For instance, let the mid-frequency bending mode inside some T1
sbb-type triad play

at the same time the role of the unstable high-frequency mode entering the adjacent T2
bsb-type triad

occupied by a lower spectral tier. In turn, the mid-frequency shear mode entering this T2
sbb-type

triad loses its stable properties inside another T3
sbb-type triad on the lower sale, etc. Note that in

this cascade there is always some definite triad that occupies the lowest tier, say TN
sbb; naturally

called the ‘‘terminating ‘‘ triad which finishes the development of the triad-cell chain, since this
triad appears as an isolating resonant ensemble, in which the secondary modes cannot break up.
This is schematized in Fig. 5. Therefore, the total number of the Tsbb and Tbsb-type triad pairs in
the plate is always limited. It should in fact be noted that the Tlbb-type triads cannot be structural
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elements of cascade processes developing the triad-cell chains in the elastic plate (Fig. 5). A
complete analytical study would require establishing the evolution equations of triad-cell chains.
This can be achieved within Lagrangian and Hamiltonian approaches related to the average since
the present system does not contain any dissipation. The corresponding Euler–Lagrange
equations reduce to ordinary differential equations for the amplitudes in the case of spatially
uniform processes. Conservation laws and global integrals of the motion can be obtained as the
law of partition of energy between waves and Manley–Rowe relations, respectively (compare to
Part I of the present work [6]). For instance, for an arbitrary N (Fig. 5), one obtains (N þ 1Þ
integrals of the motion in the form of Manley–Rowe relations (compare to Eq. (15) in Part I)

E1

o1
þ

E2

o2
¼ const:;

E2n

o2n

�
E2nþ2

o2nþ2
�

E2n�1

o2n�1
¼ const:; n ¼ ð1; ::;N � 1Þ;

E2N

o2N

�
E2Nþ1

o2Nþ1
¼ const:

ð31Þ

and the finite triad-cell chain conserves the total energy

X2Nþ1

n¼1

En ¼ const:; ð32Þ

where the Ei’s are energies and the oi’s are frequencies. One must notice that the accompanying
system of evolution equations grows rapidly in size with the number N: This system possesses (N
+1) evident integrals of motions (31), the order of the system is (3N þ 1) (for (2N þ 1) amplitudes
and N generalized phases), and it cannot be solved analytically. Notice that N being given, there

Fig. 5. Scheme of the resonant coupling of Tlbb-type triad with the resonant chain consisting of pairs of adjacent Tsbb-

and Tbsb-type triads. Each triangle T
p
ijk denotes a triad cell, where p is the number of the triad tier, index i corresponds to

the high-frequency mode of the given triad trier, index j denotes the mid-frequency mode, and k refers to the low-

frequency mode.
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are (N � 1) common modes in a cascade; then the total number of non-linear coupled modes
indeed is [3N � ðN � 1Þ� ¼ ð2N þ 1Þ: If mode #1 is an unstable high-frequency shear mode, modes
#2N and (2N þ 1) are the unstable (with respect to small perturbations) bending waves. In
particular, if the modal amplitudes #1 and #2 approach zero, then the cascade beginning from the
unstable bending wave #3 in the triad should appear. So, both cases (cascades beginning from the
high frequency shear mode and bending mode) hold true. The number N is determined by the
wave number of the initially perturbed quasi-harmonic wave mode and the type (shear or
bending) of the primary unstable mode #1. As an example, consider such a mode for a shear wave
in a plate with dispersion parameters a ¼ 0:01 and n ¼ 0:3; and with wave vector modulus
k0j j ¼ 40—see the related group velocities in Fig. 1. In this case N ¼ 9 coupled resonant triads,
and a total of 19 modes enter the triad cell chain. The corresponding spectral parameters of this
modal chain are given in Fig. 6. Initial conditions are selected such that all above referred to
generalized phases are zero while all modes possess equal portion of energy En ¼ 0:1=ð2N þ 1Þ;
with the exception of the first mode such that E1 ¼ 1: After careful evaluation of the source
(coupling) terms in the system of evolution equations (see the lengthy expressions in Ref. [12]), this
allows one to study numerically the ensuing energy partition between individual modes via the
relation for the time averaged energies Enh i as functions of the wave number modulus kj j for a
sufficient time interval (cf. Fig. 7). Power laws can be fitted to this relation for odd and even
modes separately. This is very much like the power law spectra predicted by the Kolmogorov–
Zakharov cascade hypothesis in classical and plasma turbulence (compare Refs. [15,16]).
However, the present cascades must be contrasted to those of the Kolmogorov type. The

Fig. 6. Spectral parameters for a triad-cell chain N ¼ 9 with a weakly perturbed quasi-harmonic shear wave (19 modes

are involved).
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Kolmogorov [15] cascades refer to the so-called inertial interval between the large-scale
pumping zone and the small-scale dissipation zone. In the triad-cells of the present
mechanical system there are no source, pumping, and dissipation. Furthermore, the mechanical
systems considered here possess a strong dispersion so that the mechanisms of temporal
evolution are quite different from those in the Kolmogorov case. If it is true that in the latter
case a large-scale vortex (small wave number) breaks up due to the generation of higher
harmonics (by multiplying the main frequency), into a series of small vortices (large wave
number) subject to strong molecular dissipation, in the present case the situation is opposite in the
sense that the high-frequency waves breaks up producing, due to the dispersion and division of the
main characteristic frequency, a series of low-frequency waves—which should have weak
dissipation in real systems. Finally, the triad cells of the present work appear in the simplest case
as discrete objects (quasi-particles), while the Kolmogorov cascade modelling in fluids refers to a
continuum.
In conclusion it is emphasized that the study of the stationary patterns in resonant chains is of

particular interest. The reason for this is that most transient wave patterns may be satisfactorily
approximated by stationary ones at larger times and for large traveled distances. For these, the
reader is referred to the computations given in a long memoir [12].
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Fig. 7. Average energy partition for the triad-cell chain N ¼ 9 corresponding to Fig. 6.

D.A. Kovriguine et al. / Journal of Sound and Vibration 263 (2003) 1055–10691068



References

[1] A.P. Sukhorokov, Nonlinear Interactions of Waves in Optics and Radiophysics, Naouka, Moscow, 1988

(in Russian).

[2] D.F. Nelson, Electric, Optic and Acoustic Interactions in Dielectrics, Wiley-Interscience, New York, 1979.

[3] A.D.D. Craig, Wave Interactions and Fluid Flows, Cambridge University Press, Cambridge, UK, 1985.

[4] G.A. Maugin, Nonlinear Waves in Elastic Crystals, Oxford University Press, Oxford, UK, 1999.

[5] A.I. Potapov, A.S. Pavlov, G.A. Maugin, Nonlinear wave propagation in 1D crystals with complex structure,

Wave Motion 29 (1998) 297–312.

[6] D.A. Kovriguine, G.A. Maugin, A.I. Potapov, Multiwave nonlinear couplings in elastic structures. Part 1:

One-dimensional examples International Journal of Solid Structures (special issue dedicated to J.D. Achenbach) 39

(2002) 5571–5583.

[7] G.B. Whitham, Dispersive waves and variational principles, in: S. Leibovich, R. Seebass (Eds.), Nonlinear Waves,

Cornell University Press, Ithaca, 1974, pp. 139–169.

[8] G.B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York, 1974.

[9] L.A. Ostrovsky, A.I. Potapov, Modulated Waves, Theory and Applications, Johns Hopkins University Press,

Baltimore, 1999.

[10] G.A. Maugin, H. Hadouaj, Solitary surface transverse waves on an elastic substrate coated with a thin film solitary

surface transverse waves on an elastic substrate coated with a thin film, Physics Review B 44 (1991) 1266–1280.

[11] D.A. Kovriguine, Nonlinear Resonant Interactions in Elastic Structural Members, Ph.D. Thesis, Nizhny-

Novgorod University, Russia, 1992 (in Russian).

[12] D.A. Kovriguine, A.I. Potapov, G.A. Maugin, Multi-wave nonlinear couplings in elastic structures, Report

INTAS Program 96-2370, Nizhny-Novgorod, Russia and Paris, France, 2001, 125pp.

[13] L.F. Richardson, Weather Prediction by Numerical Process, Cambridge University Press, Cambridge, UK, 1922.

[14] L.D. Landau, On the problem of turbulence, Soviet Physics Doklady 44(8) (1944) 311–314 (in Russian); reprinted

in English translation in: L.D. Landau’s Collected Papers, Oxford University Press, Oxford, 1965, pp. 387–391.

[15] A.N. Kolmogorov, On the local structure of turbulence in compressible fluids at very large Reynolds numbers,

Doklady Akademii Nauk SSSR 85 (1941) 527 (in Russian).

[16] V.E. Zakharov, Kolmogorov spectra in weak turbulence problems, in: A.A. Galeev, R.N. Sudan (Eds.),

Handbook of Plasma Physics, Vol. 2, North-Holland, Amsterdam, 1984.

D.A. Kovriguine et al. / Journal of Sound and Vibration 263 (2003) 1055–1069 1069


	Multiwave non-linear couplings in elastic structures. Part II: two-dimensional example
	Introduction
	Basic equations
	Dispersion of linear waves
	Weakly non-linear analysis: resonant triads
	Average Lagrangian
	Three types of resonant non-linear triads in the plate

	Evolution of resonant triads
	Non-linear coupling between triads
	Acknowledgements
	References


